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Abstract

Data sets that are being produced by today’s simulatiorc) as
the ones generated by DOE’s ASCI program, are too large &b re
time exploration and visualization. Therefore, new methofivi-
sualizing these data sets need to be investigated. We prasen
method that combines isosurface representations of eliffenes-
olutions into a seamless solution, virtually free of craakd over-
laps. This technique combines existing isosurface geinerat-
gorithms and wavelet theory to produce a real-time solutmn
multiple-resolution isosurfaces.
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1 Introduction

The extraction of polygonal isosurfaces is a widely usedaliga-
tion method for scalar fields in volumetric data. It is espgiuse-
ful for visualizing data sets containing objects havinglvaelfined
boundaries, where lighting and shading of the polygondbses
enhance the 3D structures. A common algorithm used for isosu
face extraction is marching cubes [8]. This algorithm traes all
cells of the volume and generates the polygonal isosurfade-b
linear interpolation along the edges of the cells. The dlgor is
trivially parallelizable, and we have been able to perfosmsiur-
face extraction, using a parallel implementation that ig pathe
Visualization Toolki(VTK) [18], of larger data setsl(24° regular
grids) in real time [7]. Even though the production of theygminal
surfaces is done in a reasonable time, the number of polygems
erated by these algorithms quickly exceeds the capabilitiehe
rendering hardware.

Isosurfaces are also a commonly used visualization teakniq
within virtual reality environments because they make fide of
the three-dimensional space and the creation of the suiddest
enough for real-time exploration of moderately sized data fL5,
17]. As data sets grow larger, however, it is becoming diffita
use virtual environments for investigation. Again thididiflty is
due not to the generation time of the surfaces, but to the eumb
of polygons generated. One can decimate the resultingcsyffait
this approach adds to the computation time of the final sardaui
is not acceptable in a real-time environment. Therefore, mnst
explore methods to calculate isosurfaces with polygon totivat
are reasonably sized for real-time rendering.

This paper describes a technique that enables the explprato
scientific visualization of large data sets using isos@$aon a
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wide variety of machines, from low-end graphics workstagido
high-end virtual reality systems. This technique allows tiser to
modify the isosurface threshold interactively, as welleduce the
number of triangles generated so that they can be displayrhi
time. The user can also choose a region of interest thatptagisd
in high resolution while the rest of the data set is displaged
lower resolution. The ability to show both high- and lowekgion
isosurfaces at the same time allows the user to maintairtineal
frame rates from the rendering engine, look at a particidgion
of the data in full detail, and have a sense of the global comte
the data set as well. The technique uses the well-studieéletav
transform to construct multiple resolutions of rectilinéata while
introducing minimum error. In the following sections of tha-
per we show how wavelet coefficients can be manipulated at the
boundary between two resolutions to ensure continuity efdimc-
tion, and we present an efficient technique that ensureincityt
of the isosurface generated. The isosurface has no ovélajn
the worst case hairline cracks may appear at multiresolltinind-
aries. However, these cracks are insignificant and, weuegl@o
not hinder the process of understanding and visualizafitreadata
set.

2 Background

Several attempts have been made to reduce the number giésan
generated by the marching cubes algorithm. The most notsable
the decimation algorithm by Schroeder et al. [19]. A full ing
resolution isosurface generated by marching cubes is isubsit
with a simpler mesh generated with only a subset of the algin
vertices. This approach is too computationally expensivejever,
because a large number of triangles are first generated t@hly
eliminated at a later stage.

Several adaptive marching cube algorithms have been pro-
posed [21, 10, 20, 11]. These techniques traverse all vamels
at least partially extract the isosurface for each voxelighlgor-
ing voxels are then merged if the isosurface is found to bdaim
However, these techniques are inappropriate for exployraiien-
tific visualization because merging of cells is directlyki to the
isosurface threshold; that is, at least a partial full reoh iso-
surface is extracted and the merging process repeated twvery
the user modifies the isovalue. Moreover, additional mensorg-
quired to store the multiple resolutions.

The benefits of octrees for faster reconstruction of iseseds
for regular volume data was first recognized by Wilhelms and
Gelder [26]. The minimum and maximum density value of the-sub
tree rooted at every inner node are stored. Large brancities ol-
ume that do not intersect the isosurface can thus be skipiesi-
ermann et al. [25] used average pyramid octrees for explgrat
visualization in which the level of refinement of a partigutener
node is determined by a user-defined focal point and radiirs of
terest. Their technique requires neighboring cells to \@nnot
more than one level of resolution. Extra processing is reguio
maintain continuity of the data set at multiresolution bdaries.
The technique generates additional polygons to fill in csatknul-
tiresolution boundaries. Moreover, additional memoryeiguired
to store the full octree.

Wavelet-based techniques are commonly used for extracting
multiresolution representations of a function. Mallat #@pposed
a framework for multiresolution decomposition of a meabiea
square-integrable, one-dimensional functiffx). The model is
extensible to higher dimensions. An approximation opetAtg is
defined that projectg(«) at the resolutior2’. Among all approx-
imated functions at resolutio®’, A,; f(x) is the function most
similar to f(z). More formally, assumindv,; to be the set of
all possible approximations at the resolutiginof all measurable,



square-integrable one-dimensional functions, this caexpeessed
as follows:

V() € Vi llg(e) = f(@)ll 2 |Asi f(=) = f(@)I] - (1)

The multiresolution transform is implemented efficiently b
the “cascade” algorithm, which successively decomposeg-a s
nal A,;+: f(z) to a coarser signal.,; f(z) and a “detail” sig-
nal D,; f(z) (also called wavelet coefficients). The wavelet co-
efficients store the difference between the two resolutams are
computed by projecting the signal onto orthogonal waveetis
functions. This transform is fully reversible and requires ad-
ditional storage. The cascade algorithm runs in linear twmit
respect to the number of samples of the original discretgasig

In volume visualization only finite signals are considerghile
Mallat's multiresolution transform is designed for infemisignals.
Using symmetric or antisymmetric wavelet basis functiolimss
for (anti)symmetric extensions of the function at the bcamyd
Therefore, it is desirable for the wavelet basis functiomsbé
(anti)symmetric when the signal is defined only over a finiter-
val. It has been proven that compactly supported, (antiysgtric,
orthogonal wavelet basis functions of degree greater themaan-
not be constructed [1]. On the other hand, relaxing the grtho
onality condition allows the construction of smooth, syntrice
and compactly supported biorthogonal wavelets. The entoo-i
duced by performing a multiresolution transform using thiogo-
nal wavelet basis functions is within a small constant ofrtiiei-
mum possible error (as described in Equation 1) [1]. Moreae
tremely efficient, in-place computation of the biorthogbmavelet
transform is possible using the lifting scheme [23].

Several researchers have used wavelets to obtain mukipdu-
tions of three-dimensional rectilinear data [12, 6, 24, H&jwever,
none of these techniques allow the user to specify a regiortert
est or permit multiple resolutions in different regions loé tdata at
the same time. Gross et al. [4] use wavelet decompositioddap-a
tively generate polygonal data representing a terrain faoneight
field. They also modify wavelet coefficients to define a regibn
interest. However, extra processing is involved, reqgitookup
into a table with 625 entries to maintain continuity of théygmnal
mesh at multiresolution boundaries.

3 Theory

In this section we first justify our choice of subsamplingteicue
(Section 3.1). We then show how we modify wavelet coeffigent
to ensure continuity of the function at multiresolution bdaries
(Section 3.2). We conclude this section by describing awciefit
technique of eliminating cracks in the isosurface at mestiution
boundaries (Section 3.3).

3.1 Subsampling Technique - Wavelet Decompo-
sition Using Linear Biorthogonal Basis

The marching cubes algorithm assumes that the scalar figields-
wise linear along the cell edges; the intersection of theusace
along an edge of the data set is determined by linearly intating
between the two boundary data points of the edge. Linearletave
basis functions have one vanishing moment. Hence, if oretie
of the cascade algorithm is performed using linear wavelséb on
a linear function, the function is represented exactly. Whigher-
order wavelet basis functions are used, even higher-outetibns
can be represented exactly. However, higher-order bastifuns
have a wider support, thus increasing the computationaladfdke
multiresolution transform. Therefore, linear basis fimcs are best
suited to represent piecewise linear functions. Hereaftarefer to
decomposition of a signal at resolutighinto a signal at resolution

Table 1: Error introduced by the three subsampling techesqu
Note that the range of data values in this data set is O to 255.

Subsampling Technique L1 Er- | RMS

ror Error
Average pyramid with box filter 15.5254| 34.9054
Accepting every eighth sample 13.0492| 33.2336
Three iterations of the forward wavel¢t10.6413| 27.0047
transform

27=1 and wavelet coefficients using the lifting scheme with linea
biorthogonal wavelet basis functions as one iteration efdghward
wavelet transformA reconstruction of a signal from a coarser res-
olution signal and wavelet coefficients using the same #hguaris
referred to as theeverse wavelet transform

Figure 1 shows the effect of subsampling using three teci®sig
An isosurface is extracted after three levels of subsammlfrthe
iron protein data s&t Note that after this subsampling process, only
0.195% of the data is retained. Figure 1(a) is obtained bseajeg
every8 x 8 x 8 subgrid, which can also be considered as three it-
erations of the cascade algorithm using Haar wavelets [,
there is more severe loss of detail here than with the othenteth-
ods. This is because the Haar wavelet basis functions hawve ze
vanishing moments and are thus suited to represent onlg\ise
constant functions, whereas the marching cubes algorifsuraes
the scalar field to be piecewise linear. The naive strategskipf
ping over samples may cause considerable aliasing, asrs&m i
ure 1(b). Table 1 gives the L1 and the root mean square (RM&) er
introduced by the three methods of subsampling. All subsaanp
data sets were first supersampled back to the original résoloy
trilinear interpolation and then compared against theimaigiron
protein data set. Again, this is justified because the isaserex-
traction algorithm assumes the scalar field to be piecevwisar
along its edges.

3.2 Ensuring Function Continuity

In order to ensure continuity of the isosurface generatélimper-
ative to ensure continuity of the function at the boundaryveen
two resolutions. We demonstrate this in two dimensions with
help of Figure 2. We need to enswi¢ = u2, d1 = d2, and
m = ““2;—“2 again assuming piecewise linearity of the function.

If the subsampling strategy used is to skip over samplesaas w
done in Figure 1(b), the function will always match at theadsgtm-
ples common to the two resolutiongl( = »2 anddl = d2 in
Figure 2), whereas other samples at the higher resolutiomn(
Figure 2) will need to be explicitly recalculated by lingairiterpo-
lating the lower-resolution values. This was done in [20hvkerage
pyramids are used as the subsampling strategy, as was dbitg in
ure 1(a), the function is not guaranteed to be continuous avthe
data points shared between the two resolutions. In [254 ¢&ties
at the coarser level are modified to be equal to the correspgnd
data values at the finer level{ is set tou2 anddl1 is set tod2 in
Figure 2). Other samples at the finer level are recalculatdid®ar
interpolation ¢» is set to®$2 in Figure 2).

We use a linear biorthogonal wavelet transform implemehbted
the lifting scheme [23] to obtain multiple resolutions ofralata
set. The lifting scheme does an in-place computation oftthrss-
form and is composed of two staggwedictandupdate During
the predictstage of the forward wavelet transform, in each itera-
tion, all odd-indexed samples are replaced by wavelet coeffis.

1Available with the standard VTK data distribution courtesipware
Inc. 682 regular grid
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Figure 1: Isosurface of iron protein data set with a threglodlL27;
(a), (b), and (c) are subsampled by a factor of eight in adietuti-
mensions. (a) Data set subsampled using average pyramlsband
filter; (b) data subsampled by skipping over every eight dasp
(c) data subsampled by applying linear, biorthogonal wettens-
form three times; (d) the original data set.

The opposite occurs during tipeedictstage of the reverse wavelet
transform. During thaipdatestage, all even-indexed samples are
transformed to represent the function at a lower or highgolte
tion in the forward or reverse wavelet transform, respegtivFor
example, in Figure 2, the low-resolution region is genetatetwo
iterations, and the high-resolution region by one iteratiof the
forward wavelet transform.

When using linear basis functions while performing the vietve
transform, a wavelet coefficient at a particular pairgives an in-
dication of how far the function is from being linearatA wavelet
coefficient of zero at indicates that the function is perfectly lin-
ear atr; so if a reverse wavelet transform is done to transform the
function one level of resolution higher, the data value aiill be a
linear interpolation of its neighboring data values at tigghbr res-
olution. This is illustrated for the one-dimensional casEigure 3.

When using linear basis functions, the value by which an-even
indexed sample is altered during thpdatestage is a function of
only its surrounding wavelet coefficients. Therefore, i dimen-
sion, if the two neighboring wavelet coefficients of a dathugaat

a pointz are zero, the data value remains unchanged when trans-

formed one resolution higher by performing one iterationthaf
reverse wavelet transform. This is illustrated in Figur&nilarly,
in two dimensions, 8 wavelet coefficientgdatea data point, while
in three dimensions the countis 26.

ul u2
[ ] @) @) @) ©) [ ] O [ ]
@) @) @) @) O O O O
Low High
@) @) @) @) m o [ ] @] [ ]
@) @) @) @) O O O O
[ @) @) O g1 d2 © [ ] O [ ]
® Data point
O  Wavelet coefficient
Figure 2: Multiresolution boundary
® Data values
1 c 12 o Wavelet coefficient
tow e¢——o—o
Linear biorthogonal wavelet
ransform using lif ting scheme
High  ¢——o——@
hl m h2
c=0 <=> m=(hl +h2)/2

Figure 3: A zero wavelet coefficient at a pointimplies that the
function is linear ats.

transform achieves this) and the high-resolution regiothatres-
olution of the original data set (the highest resolutionptéNthat
0<=1; < h; <s,i=0,1,..n—1. Also note that; and(s — h;)
need to be even so that they may bound the one-level subs&imple
low-resolution regions. Here is the sequence of steps medtd
generate a seamless multiresolution function in this @aer ex-
ample:

1. Perform one iteration of the forward wavelet transfornhi®
original data set to bring the entire data set one level af-res
lution down.

. Modify wavelet coefficients to ensure continuity. Assuthrag
w; is the position of a wavelet coefficieHf in the:'" dimen-
sion. SetW = 0if w; <= l; + ¢y Orw; >= h;
wherec,, is called thecushionwidth. This basically nulli-
fies all wavelet coefficients inside the low-resolution cegi
and inside a cushion at the boundary of the high-resolution
region. This is illustrated in two dimensions in Figure 5.€Th
cushion widthc,, is half the width of a low-resolution voxel,
which in the above example is 2, andspis 1.

— Cuw,

3. Do one iteration of a reverse wavelet transform.

Setting wavelet coefficients to zero as described aboveresisu
that the data values in the low-resolution region do not geavhile
doing the reverse wavelet transform (step 3 above). Alsothér
data values in this region are forced to be linearly inteafesl from
their neighboring data values and that includes the dataegaht

The observations of the preceding two paragraphs give us athe boundary between the two resolutions. This ensureerityt

framework for ensuring continuity of the function at the bdu
ary between two resolutions. For the following discussiefer to
Figure 5. Assume for clarity of explanation that the dataiset
dimensional¢ = 1, 2,3) and of resolutiors in all » dimensions.
Let1 andh be user-defined-dimensional points defining am-
dimensional rectangular region that forms a boundary tohtgk
resolution region. Assume that the user sets the low-réenlue-
gion to one-level subsampling (one iteration of the forwaevelet

of the function.

In the above example, the two resolutions varied by only one
level. However, this is not a requirement. The two resohgioan
vary by arbitrary amounts as long as the cushion is set tothelf
width of the low-resolution voxel. This guarantees that arg
iteration of the reverse wavelet transform, wavelet coieffits on
and outside the boundary of the high-resolution region dt age
those that line the boundary inside the high-resolutiomoregre
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Figure 4: A data value remains unchanged between two résadut
if its surrounding wavelet coefficients are zero.
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Figure 5: Smooth transition between two resolutions withielp
of a cushion

zero. This, in turn, ensures that after the reverse wavelast
form, the data values at the coarser resolution on and eutsil
high-resolution boundary are unchanged. Also, the new dta
ues generated on and outside the high-resolution boundairyd

thepredictstage of the lifting scheme are guaranteed to be linearly

interpolated from the neighboring data values at the uséned
low-resolution level.

What this technique effectively does is create a cushiorogf v
els at the boundary that forms a smooth transition betweziwb
resolutions; one side of the cushion is at a high resolutidrile
the other side is at a low resolution.

A More Efficient Algorithm

The algorithm described above is a little wasteful. A regers
wavelet transform is applied to the low-resolution regiorere
though the data values there are unaffected by this transtdow-
ever, a simple improvement to the algorithm can eliminate th
waste. Here is the modified algorithm:

1. Transform the entire data set to the user-specified loalues
tion.

2. Set all wavelet coefficients in the cushion region (See Fig
ure 5) to zero.

3. Apply the reverse wavelet transform only to the high-
resolution region (which includes the cushion) to the level
specified by the user.

This not only reduces the computational cost of transfognbie-
tween the two resolutions but also reduces the amount cdigor
required to store the wavelet coefficients that are set to. zeris
important to have the ability to recover the data set becteseser
should be able to move the high-resolution region as welhasge

the two resolution levels. We now need to store only the wevel
coefficients in the cushion region in order to recover tha dat.

3.3 Ensuring Isosurface Continuity

In Section 3.2, we described a method to ensure functionraont
ity in a linear sense at a multiresolution boundary. When pgya
the marching cubes algorithm to such a function in two diners
(called marching squares), the resulting contour linesgerd are
continuous. Figure 6 illustrates this. However, this is geterally
true in the three-dimensional case. In the marching culgs al
rithm, the function is assumed to be linear only along theesdg
The intersection of the isosurface is calculated only athegdges
of the cubical voxels. Adjacent intersection points arenzared to
form contours, which are then triangulated to give isosigfgeom-
etry. Note that if the function were trilinearly interpcdatat every
point in the volume, as is done in volume rendering [2], orreve
bilinearly interpolated along the faces of the data setréiselting
isosurface would be continuous along the multiresolutioartziary,
given that the scalar field is continuous.

Figure 6: In two dimensions, continuity of the function eresicon-
tinuity of the isolines. The white contour lines are geneddtom a
region that is two levels of resolution lower than the higlalution
region from which the yellow contour lines are generateck data
set was generated as a two-dimensional array of random mambe

Consider a face of a low-resolution cube at a multiresofutio
boundary. Assuming the scalar value at a vertex point tositaiitd
dimension, the four points at the vertices of this face mandme-
planar. In this case, the approximation of the scalar fieketusy
marching cubes (as described in the previous paragrapdnesed.
Assume that all wavelet coefficients surrounding the vestiare
setto zero, as described in Section 3.2. Then, the poimtiinted
along the edges of the face during {redictstage of the reverse
wavelet transform do not change the points of intersectioth®
isosurface with that face. This is because the new dataivint
troduced along the edges are linearly interpolated frometihge
points. However, the scalar value at the center of the fahihnis
an average of the scalar values at the four boundary vericag
not lie on the faceted scalar field approximation. The differes-
olution isolines thus generated will be coincident along ¢uges
of the face but not inside the face, as was observed in [25]s Th
results in cracks at the multiresolution boundary, astilated in
Figure 7.

Fortunately we found an efficient and easy-to-implement way
around this problem. Refer to Figure 8(a). Consider a navgla
multiresolution boundary facé& with verticesvi, vz, vs, v4. AS-
sume the isosurface intersedtsalong adjacent edges; vz and
woUs. This is equivalent to saying that the approximated scagddd fi
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Figure 7: A crack is formed in spite of the function being d¢out
ous at the boundary if the four vertices at a face are nonacapl
(a) is a face at a boundary where the resolutions differ byl@re.
(b) and (c) give the surface plots of the boundary face at lod/ a
high resolutions, respectively, as well as a contour lin@ashin
red with an isovalue of 6.5. Note the fold in the low-resalatsur-
face plot. The two surface plots differ at the center at tHe Tae
contour lines coincide along the edges of the face but nateris

has a fold along the diagonalw;. After nullifying the wavelet
coefficients in the cushion and doing one level of a reveraeiea
transform, we go up by one resolution. We then modify theascal
value+at center of, ¢, to lie along the fold, that is, we set its value
to HLTEe,

Re2fer now to Figure 8(b) and (c). Assume that the isosurface
passes though opposite edgesrofvivz, andvzus. After going
up one resolution, the scalar values at the centdr ahay have
to be adjusted so that the isolines generated coincide tatiotv-
resolution isoline orF'. This is done by pulling the scalar value at
the center off" up or down, until the new, high-resolution isoline
bumps against the low-resolution isoline. In more detdis is
accomplished as follows:

1. Calculate the intersection pombf the low-resolution isoline
with the edgenm; that connects the midpoints of the other
two edges®zvr anduv;us).

2. Set the scalar value at the centerfgfc, so that the inter-
section of the high-resolution isosurface withremains un-
changed alongzim; (i.€., the high-resolution isoline passes
throughp).

Assuming that the isovalue thresholdss, v(x) is the scalar value
at locationz, and referring to Figure 8(b) and (c), the scalar value
atc is changed according to the following pseudocode:

/* calculate e = scalar value at p */
_ 1 itso—v(vg) itso—v(vy)
let e =3 xASmg—vin T S
if (e>0.5)/* Figure 8(b) */
let e=2xe—1
let v(c) = 2o=exv(ma)
else /* Figure 8(c) */
let e=2xe
let v(c) = %ﬂl +v(my)
endif
(@)
va V3 V4 V3 va V3
c c c
) ) )
V1 V2 V1 V2 V1 V2
| | |
c=(v 1+v 3)2
(b) (©
V4 V3 V4 V3
c | e ! c e
m e eop o Mme ep e ®
V1 \X V1 V2
—————————— Isosurface with thr eshold iso

Figure 8: Modifying the center value of a boundary face to en-
sure continuity of the isosurface. Note that rotationajlynsetric
cases have been omitted: (a) isosurface intersects atizages of
boundary face; (b) and (c) isosurface intersects oppodges

Refer to Figure 9. In this case the isoline passing through op
posite edges of' intersects with two high-resolution edges of the



data set or¥’. There can be instances in which it is impossible to
adjust the scalar value aso that the high-resolution isoline passes
through bothp andq. In our implementation, we adjust the scalar
value atc so that the isoline passes throyghThis guarantees that 8
the two isolines at different resolutions coincide alongeast half
the faceF' (alongpr in Figure 9). Hairline cracks may appear on theg
other half. Figure 10 shows such a crack. We have experirente
found that only approximately 4.19% of multiresolution ndary
faces, which intersect the isosurface, develop these srekmax-
imum area of the triangle forming the crack is 2.84% of theaark
the low-resolution boundary face, while the average craek &
1.22%. We believe that these cracks do not hinder the visatadn
of the data set.
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Figure 9: (a) A low-resolution isoline may intersect two g
resolution edges. (b) Our correction forces the high-rg&wi iso-

line to coincide with one intersection poip}(but not both. Thin
cracks may result.

(b)

Figure 10: An example of a minute crack generated in the iron
protein data set. (a) The global view showing the boundathef
region where the crack exits as a green rectangle; (b) tle& ovag-
nified.

Note that the modification of the data set introduced above is

easily reversible. Before performing any iteration of toexfard
wavelet transform involving only the high-resolution regi the
scalarvalues at the centers of all faces along multireisolitound-
aries need to be restored. This is done by simply settingdhlais
value at the center of a face to the average of the scalarwatues
four vertices.

Our technique fills cracks by modifying sparse data valuesal
multiresolution boundaries so that the high-resolutiogesdare
forced to coincide with the corresponding low-resoluticdges.
The technique is efficient because the change at a particetar
tex is a function of only its immediate neighbors and the entrr
isovalue. The change is also trivially reversible. Figuteshows

isosurface extraction with and without this correctionlaapto the
boundaries.

(€Y

(b)

Figure 11: Fixing the cracks by modifying data points at bibun
aries. The yellow region is the isosurface generated atititeebt
resolution; the white region is the isosurface generatam fiown
sampling by two levels: (a) without the correction, craclkshble
(b) With the correction, no cracks.

Marching Cubes Ambiguities

Up to now, we have discussed techniques to ensure contiafiity
the isosurface. Note that the isosurfaces of the differesolu-
tion regions are extracted with separate calls to the magatibes
algorithm. An ambiguous face [13] may exist at a multiresolu
tion boundary. In order to ensure topological consisterarpss
the boundary, the same disambiguation choice needs to be atad
neighboring multiresolution cells. We use the so-callegk&-entry
cubical table marching cubes technique [14]. In this teghaj an
arbitrary choice is used at the ambiguous face. Howeveghnei
boring cells produce the same contours at the common faas, th
maintaining topological consistency.

4

We built our system using the Visualization Toolkit (VTK)dJL
which is free softwaré. The code is written using C++. Isosur-
face extraction is done using a VTK function called syncized
templates, which is an improved version of standard siegkey
cubical marching cubes. Therefore, marching cubes antlaguit
multiresolution boundaries, as discussed in Section 3€2taken
care of.

We built our biorthogonal wavelet transform functions titey
with free softward called LIFTPACK [3]. LIFTPACK supports
one- and two-dimensional biorthogonal wavelet transfoahar-
bitrary order using the lifting scheme. We extended thestiegim
to three dimensions and reduced its computational reqeinéras
explained below.

LIFTPACK uses the so-called non standard technique [22] to
construct two-dimensional wavelet bases from one-dinoeredba-
sis functions. AssumingD_Tr ansf or mis a function performing
one iteration of a forward wavelet transform in one dimensane
can express a forward wavelet transform in two dimensiosis,gu
the non standard technique, algorithmically as follows:

Implementation

for each row r
1D_Transforn(r)

endfor

for each columm ¢
1D_Transforn(¢)

endfor

2Available at http://www.kitware.com/vtk.html
3Available at http://iwww.cs.sc.edufernandelliftpack/



Note that in the algorithm, the wavelet coefficients gerestai-
ter applying the transform to the rows are again subjectedfto-
ward wavelet transform when iterating over the columns. Vide:m
ified the second loop of the algorithm so tHdd Tr ansf or mis
not applied to columns containing only wavelet coefficighes, in
two dimensions, we skipped over every alternate column}hdf
data set size is x s, the number of data elements that are pro-
cessed byl D_Tr ansf or mreduces fron2s? to 1.5s%: a factor of
25%. This is illustrated in Figure 12. Note that this modifica
generates the same multiresolution data sets as the drajgw
rithm. Also, the effect of null wavelet coefficients as dissad in
Section 3.2 remains the same. The following pseudocodeiiesc
the modified algorithm in two dimensions:

for each row r
1D_Transforn(r)

endfor

for each alternate columm ¢
1D_Transforn(c)

endfor

Note that the computation savings are even greater wheiggoin
up to three dimensionslD_Tr ansf or mis applied to only one-
fourth of the rows in the third dimension. Consequentlyrthmber
of data elements processedty_Tr ansf or m reduces fronss®
to1.75s%, a factor of 41.7%.

[ NON NN NeN NeoN J

[N NN NON NoN ]

[ NN NN NeN NeN Jj ® Data Point
'YeoX XoX XoX XoX o Wavelet coefficient
[ NON NN NeN NeoN J

[N NN NON NoN ]

[ NON NN NeN NeoN J

[N NON NoN JNON ]

Thestjﬁﬁv formed again

Figure 12: The data set after applyia®_Tr ansf or mto all the
rows. The columns composed of only wavelet coefficients me¢d
be further processed BD_Tr ansf or m

Also note that the multidimensional wavelet transform as de
scribed in the above pseudocode is easily parallelizallee ach
iteration of the loop can be independently executed.

Region of Interest

The user can specify a rectangular region defining a regidanterf

estas well as the resolution level of the two regions. Asduaneh

are the user-specified low- and high-resolution levelpeetvely,
thatis, the number of levels these regions are subsam el tfmat
|log, s| > 1 > h). The initialization steps are as follows:

1. Perform! iterations of the forward wavelet transform on
the full data set to bring it down to the user-specified low-
resolution level.

2. Store wavelet coefficients in the cushion region, and thén
lify them.

3. Perform(l — h) iterations of the reverse wavelet transform
only on the high-resolution region. Modify data points & th
center of boundary faces after each iteration, as desciibed
Section 3.2.

4. Perform isosurface extraction. The different resotutie-
gions are processed by separate calls to the synchronired te
plates function.

The resolution levels can be changed by the user too. Asgumin
I andh’ are the new low and high resolutions, respectively, the
following steps are performed:

1. Perform(l — h) iterations of the forward wavelet transform
on the old high-resolution region, restoring data valugbat
center of boundary faces before each iteration, as desldribe
Section 3.2.

2. Restore the wavelet coefficients in the old cushion.

S >0
Perform(i’ — 1) iterations of the forward wavelet trans-
form on the full data set '
elseif (I < 1)
Perform(! — ') iterations of the reverse wavelet trans-

_ form on the full data set )
This step brings the entire data set to the new low-resalutio

.

w

4. Store the wavelet coefficients in the new cushion and thén n
lify them.

a1

. Perform(l’ — k') iterations of the reverse wavelet transform
only on the high-resolution region. Modify data points & th
center of boundary faces after each iteration, as desciibed
Section 3.2.

6. Perform isosurface extraction. The different-resolutie-
gions are processed by separate calls to the synchronired te
plates algorithm.

The region of interest can be interactively moved and relsize
The steps involved for this are same as above, skipping séeyl 3
replacing!’ by I andhk’ by h in step 5. We recognize that for step 5
in this situation, the isosurface extraction needs to besdumly
in a limited number of voxels. I/ andH' are the old and new
high-resolution regions and andC" are the old and new cushions,
isosurface extraction need be done only in the regién- H') U
(H' — H)u C'u C'. We haven'timplemented this feature, but we
foresee a reduction in the isosurface extraction times leTa.

5 Results

In this section we give timings and output images of our imple
mentation on different machines. Timings are taken on a two-
processor SGI octafié’ with an MXI graphics board and 256 MB
RAM(SG), a two-processor Intel Pﬁ]M with a 32 MB Matrox
Millennium 400 video card and 512 MB RAM, running Windows
NTTM(NT) and a two-processor Intel PI# with a 16 MB Ma-
trox Millennium 400 video card and 256 MB RAM, running Red
Hat Linux™ ™ (LX). We haven't parallelized our implementation of
the wavelet transform at this stage, and the code is not qan

We show results from the Rayleigh-Taylor data sethich is
a128 x 512 x 128 regular grid. Images at different resolutions
are shown in Figure 13 and timings listed in Table 2. We ob-
serve that the wavelet transform time increases only ltgari
cally with number of levels. This is as expected because tine-n
ber of samples to be processed reduces by one-eighth after ea
iteration. Note that the wavelet transform processes théifyh-
resolution data and therefore takes several seconds atpstais
shown in Table 2. However, this can be considered a prepsoues
step. A change in the regions-of-interest box requires dirasib-
lution transform only of the high-resolution region. Theiseings
are shown in Table 3.

4The Rayleigh-Taylor data used in this work was in part geteeray
the DOE-supported ASCI/Alliance Center for Astrophysi@alermonu-
clear Flashes at the University of Chicago.



Table 2: Rayleigh-Taylor data set at different resolutioriEhe
wavelet transform times indicated are those needed toftrans
the full-resolution data set to the low resolution specifigad is
required only at startup.

Res. |PolygohWavelet Isosurface Frame
Count | Transform Extraction Rendering
Time (sec) time (sec) Time (sec)
SG [NT [LX [SG |NT |LX [SG [NT |LX
full 307482 N/A|[N/A|N/A|15.1 7.53 4.00] 0.52 1.80 1.89
half |76714|6.28/11.6/2.28 1.970.95 0.47 0.13 0.49 0.58
quartgrl8234 | 7.13 13.0 2.61 0.30] 0.16| 0.07| .037| 0.14, 0.19
eighth| 3612 |7.21]13.2|2.66| 0.06| 0.03| 0.01] .015 .063 .071

We now show images with a region of interest specified. In Fig{ '

ure 14, the region in the red box is the user-specified highlation
region. This box can be interactively moved and resized byitter.
The levels of the two resolutions can also be interactivenged.

Refer to Table 3. Every time the region of interest or the res
olution level(s) are modified, wavelet transforms (whichlides
modification of the wavelet coefficients) as well as isostefax-
traction are performed. These steps take only a few secaeds e
with a single-threaded implementation. On the other hamdget
big wins on frame rates. Note that the isosurfaces genesated
seamless between the two resolutions. Figure 15 shows augdos
of multiresolution boundaries.

Table 3: Rayleigh-Taylor data set with regions of intereShe
above wavelet transform and isosurface extraction timegrarse
that occur when the region of interest box is moved or resilzad
ages of the region of interest box are shown in Figure 14.

High | PolygokVavelet Isosurface Frame
: Low | Count| Transform Extraction Rendering
Time (sec) Time (sec) Time (sec)
SG [NT [LX [SG |NT |LX [SG [NT |LX
0:1 [988960.23/0.77/0.13/ 2.26| 1.20/ 0.58 0.18 0.63] 0.98
14(a)
0:2 49986 0.29 1.06/0.170.66| 0.52/ 0.19 0.09 0.32 0.50
14(b)
0:3 |43766 0.56|1.530.22/0.46| 0.49 0.15 0.08 0.27|0.44
14(c)

6 Conclusions and Future Work

We have demonstrated an efficient method for displaying kesm
multiresolution isosurfaces interactively. The methodkesuse
of the power of wavelet theory to generate multiple resohsiof
the data while introducing nearly minimal error, thus allogvex-
ploratory scientific visualization on a wide variety of maas. The
multiresolution transform we use guarantees that the raatiiu-
tion scalar field generated @ continuous.

Future work includes an inspection of wavelet coefficiehtiifa
ferent regions of the data set, using them as a measure afsbe r
lution needed to faithfully represent the data and thusigiog a
framework for generation of adaptive isosurfaces. Regidirger-
est may also be defined based on the user gaze within a endranm

Figure 13: Isosurface of Rayleigh-Taylor data at multigeaiu-
tions: (a) full resolution; (b) one-level subsampling @%. reduc-
tion); (c) Two level subsampling (98.44% reduction); (detalevel
subsampling (99.80% reduction).

Figure 14: Isosurface of Rayleigh-Taylor data with regidrine
terest specified as a red box: (a) high:full resolution, Fadf:
resolution; (b) high:full resolution, low:quarter restdn; (c)
high:full resolution, low:one-eighth resolution (d) hipalf reso-
lution, low:quarter resolution.



Figure 15: Seamless multi resolution boundaries.

where such information is already being collected, such asvir-
tual environment. In the area of remote visualization, wangb
investigate progressive transmission of multiresolutgosurfaces
using wavelet-based multiresolution decomposition.
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